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Abstract 

We analyze a class of stochastic and dynamic vehicle routing problems in which 
demands arrive randomly over time and the objective is minimizing waiting time. In 
our previous work ([6], [7]), we analyzed this problem for the case of uniformly 
distributed demand locations and Poisson arrivals. In this paper, using quite different 

techniques, we are able to extend our results to the more realistic case where 
demand locations have an arbitrary continuous distribution and arrivals follow only a 

general renewal process. Further, we improve significantly the best known lower 
bounds for this class of problems and construct policies that are provably within a 
small constant factor relative to the optimal solution. We show that the leading 
behavior of the optimal system time has a particularly simple form that offers 

important structural insight into the behavior of the system. Moreover, by 
distinguishing two classes of policies our analysis shows an interesting dependence of 
the system performance on the demand distribution. 
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1. Introduction 

Dynamic vehicle routing problems occur when one has to visit customers 

(demands) that arrive sequentially over time. The objective is to schedule these 
visits in a way that is economical, yet also provides an acceptable service level (wait 
for delivery or service). Because future demand is often uncertain, it is natural to 
view the sequence of arrivals in dynamic vehicle routing problems as a stochastic 

process. That is, at time t we know the location and age of all demands that have 
arrived before time t, but we have only a probabilistic characterization of future 
demand locations and arrival times. In addition, if the planning horizon is 

sufficiently long (as in the day-to-day operation of a distribution facility), we may 
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view the problem as that of finding a stationary policy for scheduling vehicles that 
minimizes a time average cost over an infinite horizon. In such a setting, the 
economical delivery objective corresponds to minimizing the average distance 
traveled per demand served, while the service-level objective corresponds to 
minimizing the average wait for delivery or service. 

There are many practical settings in which such problems arise. Any distribution 
system that receives orders in real time and makes deliveries based on these orders 
(courier services, deliveries of flowers, pizza, etc.) is a clear candidate. Other 
applications include scheduling repair crews to service geographically dispersed 
failures. Examples of this type include repairing electric utility networks, contract 
maintenance of customer premise equipment by computer and telecom equipment 
vendors, and road and highway maintenance. Distribution of finished goods from 
factories to retailers is a third important application area. Arrivals in this context 
correspond to the completion of a unit at the factory that is designated for a 
particular retailer. In this case, the average waiting time represents a service level 
and, for a fixed production rate, a measure of the average inventory held in the 
distribution channel. A specific example is the delivery of automobiles from 
assembly plants to local dealers. We refer the reader to the excellent general 
discussion in [17] and to the more specific discussions in [6] and [7] for more 
background on dynamic vehicle routing problems. 

1.1. The dynamic traveling repairman problem (DTRP). In [6] and [7] we 

analyzed a version of a dynamic vehicle routing problem, which we call the dynamic 
traveling repairman problem (DTRP). Demands arrive according to a Poisson 
process to a Euclidean service region, and their locations are independent and 
uniformly distributed throughout the service region. (These locations are random 
only in the sense mentioned above; namely that at time t we know with certainty the 
locations of demands that arrived before time t, but future demand locations form 
an i.i.d. sequence.) At each location, the vehicle serving the demand must spend 
some amount of time in on-site service. We assume this time is a generally 
distributed, i.i.d. random variable for all demands that is realized only when service 
is completed. The objective is to find a stationary policy It for routing one or more 
vehicles that travel at constant velocity so that the average system time (wait for 
completion of service), T,, is minimized; that is, we seek a policy that maximizes the 
level of service provided by the fleet of vehicles. 

For the DTRP, we found policies that were provably optimal in light traffic and 
policies that had system times whose ratio to the optimum system time, T*, were 
provably within a constant factor in heavy traffic. The best of these later policies, the 
so-called modified TSP policy [7], has a guarantee of T,/T* ' 3-6. In [7] we also ex- 
tended the model to the case where vehicles have an upper bound q on the num- 
ber of demands they can serve before having to return to a given depot location. 

1.2. Overview and contribution of this paper. In this paper, we extend the 
analysis of the DTRP to the case where demand locations are distributed to an 
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arbitrary, continuous density defined over the service region and arrivals form a 

general renewal process. (See Section 2 for formal definitions and assumptions.) 
These extensions are important for both practical and theoretical reasons. In 

practice, one rarely encounters uniformly distributed locations; therefore, to 

actually use such models, an understanding of the problem cost and solution 
structure under general distributions is essential. Further, while the Poisson arrival 

assumption may be appropriate for certain repair systems, other applications (e.g. 
finished goods distribution from assembly plants) have either more or less variable 
interarrival times: therefore, it is important to understand to what extent the results 
hold for non-Poisson arrivals. 

From a theoretical perspective, these generalizations are also quite challenging. In 
our previous analysis, uniformity and PASTA [20] were heavily exploited. We are 
therefore forced to develop new proof techniques that do not rely on these 

properties. These new techniques are introduced and developed in Section 3. This 
new approach has the added benefit of strengthening the lower bound on T* by a 
factor of 2. Thus, we are able to improve our heavy traffic guarantee for the 
modified TSP policy to T,/T* 1-8, which brings the guarantee into a more 

practical range. Indeed, we conjecture that the modified TSP policy is asymptoti- 
cally optimal in heavy traffic. 

These extensions also reveal interesting structural properties of the problem that 
are not apparent in the uniform case. Specifically, it turns out that we need to 

distinguish between policies that provide the same level of service (i.e. mean waiting 
time) for all locations, which we call spatially unbiased policies, and those which 

may produce waiting times that vary with location, which we call spatially biased 

policies. We fully characterize these two behaviors and construct policies that are 

provably good for both in Section 4. In Section 5, we compare these two behaviors 
and show that there is always an increase in the optimal system time if one requires 
spatially unbiased service. Further, this gap widens as the distribution of locations 
becomes 'less uniform'. 

We re-examine the lower bounds in Section 6 and show that they are as tight as 

possible given the information used in their derivation. Thus, one can improve this 
bound only by exploiting more of the problem's vehicle routing structure. Finally, in 
Section 7 we briefly mention some other extensions to the case of capacitated 
vehicle and higher-dimensional spaces. In Section 8, we give our conclusions. 

2. Notation and definitions 

2.1. Problem definition. A total of m identical vehicles operates in a service 

region d c R2. Vehicles travel at a constant, finite velocity v. Demands arrive to s 

according to a stationary renewal process with intensity A. A demand's location 
becomes known at its arrival epoch, and it stays at its location until a vehicle visits it 
and completes its on-site service. We make the following assumptions in the model: 

1. c: R2 is closed and bounded. 
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2. Interarrival times have finite variance a2 and Laplace transform A*(s). 
3. On-site service times {s,; i 1} are generally distributed i.i.d. random vari- 

ables with finite first and second moments denoted by s and s2 respectively. 
4. Demand locations {Xi; i 1} are i.i.d. and distributed according to a con- 

tinuous density f(x) which satisfies 

P{Xi E . } = f (x) dx VY c_ d and f(x) dx = 1. 

5. The density f(x) is K-Lipschitz, 

(1) If(x)-f(Y)l K IIx-y Vx, y e i, 

and bounded above and below, 

(2) 0<f f(x)f< oo, Vxe . 

A policy for routing the vehicles is said to be stable if the expected number of 
demands in the system is bounded uniformly for all times t. If a policy is stable, 
p-= /m is the fraction of total vehicle time spent in on-site service. The term 

heavy traffic denotes the condition p-> 1. We let W denote the mean waiting time 
and T = W + s denote the mean system time (wait in queue plus on-site service) of a 

randomly selected demand. 
Let X denote the subset of all stable, stationary policies ,u with the following 

properties: 

P1. Decisions are taken only at service completion epochs except for vehicles that 
are at a designated depot location x(, in which case there is no restriction on 
the timing of decisions. 

P2. A decision consists exclusively of choosing to visit either one of the demands 
in the system or to visit (or remain at) the fixed depot location xo. 

P3. Let W(x) be the waiting time conditioned on a random arrival's location 

being x; that is W(x) E[Wi Xi = x]. Then the policy provides normalized 

waiting times that are bounded and smooth; specifically, the function 

W(x) 
(3) V(x) - 

satisfies 0 < p '- p(x) < ? < oo and is K-Lipschitz for all 0 < p < 1 when f(x) 
is similarly bounded and K-Lipschitz. 

Several characteristics of the class M are worth examining. First, we need a depot 
location for two reasons: to ensure that there is always a decision available at each 

completion epoch, and to ensure that there is some location where the vehicle can 
remain idle if the system is empty. The fact that a vehicle can be idle only at the 

depot xo turns out to be an important property for our subsequent analysis. Second, 
P3 requires that the policy provide local waiting times W(x) that do not vary 
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abruptly with changes in location x and are bounded relative to the system-wide 
expected waiting time W. Again, this is needed primarily for technical reasons, 
though it is arguably a natural characteristic of most practical policies. Indeed, by 
definition (see below), W(x)= W for any spatially unbiased policy and thus P3 is 
trivially satisfied for all such policies; however, in the spatially biased case, we must 
restrict e to only those policies which satisfy P3. We remark that in the uniform 
demand case discussed in [6] and [7], we allowed a more general class of policies in 
which vehicles can wait at any location x and change destinations at any time and 
smoothness of t(x) was not required. Finally, we note that since the velocity v is 
finite and the location distribution is continuous, service completions are sequential 
(i.e. service completions do not occur simultaneously). 

Letting T7 denote the system time of a particular policy / E M, then the DTRP is 
the problem of finding a policy , *, if one exists, such that 

T*. = inf {T, I P E }. 

We let T* denote the infimum on the right-hand side above. A policy A for which 
T,/T* is bounded has a constant factor guarantee. If lim,p_ (T,/T*) is bounded, 
then the policy /i has a constant factor guarantee in heavy traffic. 

2.2. Spatially biased and unbiased policies. We shall also need two definitions 
mentioned informally above and in Section 1. In these definitions, Xi is the location 
of a randomly chosen demand and W, is its waiting time. 

Definition 1. A policy fi E J is spatially unbiased if 

E[Wi Xi, E]=W Vy c . 

Definition 2. A policy u E Jt is spatially biased if there exists sets Y1, S2 c_ such 
that 

E[W I Xi e S]>E[W I Xi E 21. 

Recalling that W(x) E[W, IXi =x], observe that for spatially unbiased policies 
W = W(x) for all x as mentioned above. For a spatially biased policy W and W(x) 
are related only by 

W = f W(x)f (x) dx. 

2.3. Spatial queues on subsets of R2. We associate a queue with every y c R2, 
referred to as a spatial queue, by considering S to be a 'black box' that has arrivals 
(demands arriving to Y) and departures (service completions within Y). Let 
p(Y) = ff(x) dx denote the probability that an arrival falls in the set Y, 
A.(Y)= Ap(Y) denote the arrival rate to Y, and N(Y) denote the time average 
number of demands in the queue 9. Note that since all demands are located in i, 
N(Y) = N(Y n f ) for all sets Y. In particular, the total time average number in 
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queue, N, is given by N = N(s). The waiting time in S9 is denoted W(Y) and given 
by 

W(Y) = E[W X, E = f W(x)f (x I x, e Y) dx. 

We define 

(4) p f(x) f(x)?(x). 

The function q(x) is interpreted as the time-average density of demands in the 
system in the sense that 

(5) N(Y) = NJ +(x) dx, 

for any y c I2. To see this we use the definition of )(x) and Little's theorem, and 
note that 

N(Y) = A(Y)W(Y) 

= [ f (x) dx][ W(x)f (x X, E 9) dx] 

W(x) ~. = A W (x) dx 

= NJ (x) dx. 

3. Heavy traffic lower bounds 

In this section, we derive our main lower bounds on T*. We begin by proving 
some lemmas related to spatial queues in the system that culminate in a generic 
lower bound on T*. We then specialize this bound to the spatially biased and 
unbiased cases to arrive at our main lower bounds. 

3.1. Preliminary lemmas and bounds 

3.1.1. Preliminary lemmas. Our first lemma shows that qp(x) has the interpretation 
of a density function and that it is both bounded and smooth. 

Lemma 1. For any stable policy satisfying property P3, the function ?5(x) satisfies 

(6) If (x)dx = 1 

(7) ?(x) 0 Vx E i, 

and p(x) is bounded, 0 < q '- +(x) ' 4 < oo, and K-Lipschitz. 

Proof. The first part, (6)-(7), follows directly from the definition of ?(x) and the 
fact that N(s) = N and N(.) is always positive. Boundedness of ?p(x) is due to the 
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boundedness of f(x) and V(x). The K-Lipschitz condition follows by noting that 

If(x)4'(x) -f(y)V(y) = If(x)((x)- p(y)) - (y)(f (y) -f(x))l 

<fK Ilx-yll + , K Ix- yll = K' llx -yll. 

In our proof of the lower bounds we will need to relate the expected number of 
demands left behind by a random departure from a small area Y9 to the time-average 
number in queue N(Sy). Our next lemma gives us this relationship. 

Let the random variables Y(Y) denote an interarrival time of the queue Y9. Note 
that arrivals to Y represent a thinning of the renewal process to the entire region 
and thus Y(9) is a geometric sum of interarrival times. Therefore, the Laplace 
transform Al (s) of the resulting,renewal process is given by 

A *(s)p(.Y) (8) A*(s) A*(s)p(1S) 

where p(Y)= fyff(x) dx is the probability that an arrival falls in the set Y. In 

particular the coefficient of variation c, = Var [A ]/(E[A ])2 is 

(9) CA,= 1 +p(Y)(C2- 1), 

where c2 is the coefficient of variation of the interarrival time of the original renewal 

process. 
Let n+(Y), a random variable, denote the number of demands left behind by a 

random departure from Y and n(Y) denote the number of demands in queue at a 
random epoch. Since service is sequential, this is a well-defined random variable. 
Define N+(Y)-=E[n+(Y)] and recall N(9)-=E[n(Y)]. Let W(Y) denote the 

expected waiting time in this queue. We are primarily interested in small balls and 
thus we define 6(x, z) to be the set of points within a distance of z from a given 
location x (i.e. C6(x, z) = {y I II -xll z)}). 

If the arrival process is Poisson, then from the PASTA property (see [20]), 
n+(Y) =d n(Y) and thus N+(9) = N(9). In the next lemma we address the relation 
of N+(Y) to N(Y) in heavy traffic for = I(x, z), general renewal processes and 
small z. Intuitively, for small z, the probability p(Y) tends to zero and thus the 
coefficient of variation c2, tends to 1, i.e. the resulting renewal process approaches a 
Poisson process for which we can apply PASTA. We formalize this as follows. 

Lemma 2. For any stable policy satisfying P3, as p-> 1, 

c2 - 1 
N+(C(x, z)) = Np(x)Jrz2 + f (x) C rz2 + No(z2). 

Proof. In general, the expected number of customers in the system left by a 

departing customer depends on the service discipline when the arrival process is not 
Poisson. Bertsimas and Nakazato [4] prove that in general queueing systems with 
renewal inputs, the expected number of customers in the system left by a departing 
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customer satisfies in heavy traffic: 

2 ( 
N+ =N+ a 

+ o(), 2 

where the term o(1) goes to zero exponentially fast as p-> 1, and c2 is the squared 
coefficients of variation in the input process, i.e. in heavy traffic N+ does not 

depend on the service discipline. Applying this relation to the queue 6(x, z) we 
obtain that 

N+((C(x, z)) = N(C6(x, z)) + C' + o(1) 

2 (10) 2 
= N((x, z)) +p((x, Z)) A2 + o(l), 

where we have used (9). 
By assumption, f(x) is K-Lipschitz and thus -K IIy - xl +f(x) -f(y) < K j y - 

xl +f(x), which leads to 

f(x)rz2- K r2jrrdr 'p(C((x, z))= f(y) dy f(x)nz2 K r2r dr, 
() < (x,z) J() 

and thus 
2Jr 2Jir 

f(x)Jrz2 - _- Kz3 p(C(x, z)) f (x)Jrz2 + -2 Kz3 

i.e. 

(11) p('(x, z)) =f(x)Jrz2 + o(z2). 

Similarly, since N(6(x, z)) = N fS(x,) (y) dy, and by Lemma 1, +(y) is K- 

Lipschitz, 

(12) N(((x, z)) = N((x).7z2 + No(z2). 

Substituting (11), (12) into (10) proves the lemma. 

3.1.2. Preliminary lower bounds. We now combine the above results to derive an 

important lemma relating the expected nearest-neighbor distance at a completion 
epoch to N, the average number in queue. Let di denote the distance traveled from 
demand i to the next demand served after i; that is, the distance the serving vehicle 
travels after departing from i. Let Z* denote the distance from the server to either 
the depot or the closest unserved demand (whichever is smaller) at the completion 
epoch of demand i (the 'nearest neighbor' distance). Then we have the following 
result. 

Lemma 3. For any stable policy satisfying P1 and P2, E[Z*] < E[di] and therefore 

E[Z*] - lim E[Z*] lim E[di] - d. 
i--o- i--oo 
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Proof. Properties P1 and P2 imply that Z* is the decision that minimizes di for all 
i and thus the above follows. 

Finding a bound on E[Z*] will thus provide a bound on E[d]. Such a bound is 

provided by the following key lemma. 

Lemma 4. For any stable policy satisfying P3, 

lim VNE[Z*] 2- F 4-'(x)f(x) dx. 
N-.* 3V7J J 

Proof. Consider a randomly tagged demand arriving at location X and condition 
on the event {X = x}. Define c(x) = N7r(x) and let @(N) = {I x - lx -x(01 c-l(x)} 
denote the set of points x within a radius c-2(x) of the location x(. There are two 
cases to consider: 

Case 1: x 0 23(N). Recall that n+(C(x, z)) denotes the number of demands in the 
set W(x, z) at the completion epoch of our tagged demand, and observe that as long 
as the depot Xo is outside the ball 6(x, z), 

(13) P(Z* z | X = x) = P(n+(C(x, z) > 0) < N+(q(x, z)), 

where the last inequality is due to the fact that n+(c(x, z)) is a non-negative, 
integer-valued random variable. Considering the service completion of our tagged 
demand as a departure from the queue TC(x, z), we therefore have by Lemma 2 and 
the boundedness of f(x) that 

N+(T(x, z))= N((x)jrz2 + 0(l)z2 + No(z2). 

Substituting into the bound (13) implies 

P(Z* > z | X = x) 
> 1 - N4(x)rz2 - 0(1)z2 - No(z2). 

Recalling that c(x) NJ(p(x), and the depot is outside the ball 6(x, z) for all 
z _ c-2(x) when x 0 @(N) we have 

E[Z* =x]= fx P(Z*>z X=x)dz 

_ fmax {0, 1 - Nz2p(x) - (1)z2 - No(z2)} dz 

C-(x) c-i(x) 

p> | (1 - c(X)Z2) dz - ((l)z2 + No(z2)) dz 

= 4-2(x) - o(N- ). 

Case 2: x e 2(N). In this case n+(C(x, z)) = 0 does not imply Z* >z for all 
z _ c- (x). Thus we use only the trivial bound 

P(Z* > z X =x) o0. 

955 



DIMITRIS J. BERTSIMAS AND GARRETT VAN RYZIN 

We now combine these two cases by unconditioning. First note that by Lemma 1, 
?(x) >- VN, which implies fS(N) dx - 0(1/N). Therefore, 

E[Z*] > 
2 

f x)f(x)dx - o(N-2) 
3/N-d -((N) 

_=2 3 l-\ -i(x)f(x )dx- -if\ dx]-o(N-) 

= 3V -?(x)f (x) dx - o(N-). 

Multiplying both sides above by VN and taking the limit as N--oo proves the 
lemma. 

Remark. The proof above shows the contribution to the lower bound from the 
points @(N) that are close to the depot is asymptotically insignificant. Thus, though 
we require a depot to ensure that decisions are well defined at each completion 
epoch, its presence has no effect on the heavy traffic bounds. 

Lemma 4 can be used to prove the following intermediate bound on the optimal 
system time T*. 

Lemma 5. There exists a single constant y such that for all stable policies 
satisfying P1-P3, 

[fp _-(x)f (x) dx]2 
lim T(1 p)2 > 2 2 
p--l v m 

and y 2/3Vt. 

Proof. Consider the following necessary condition for stability 

d m 
s+- -. 

v A 

Using the fact that E[Z*]<-d for policies that satisfy P1 and P2 by Lemma 3, 
multiplying the second term on the left-hand side above by VN/IV and rearranging 
implies 

V (1 - p) A- [ 
mv 

Note that since N is at least as large as the mean number in queue in the 
corresponding GIG/m queue (i.e. the queue with v = oo), as p-- 1, we must have 
N-- oo. Therefore taking the limit as p -- 1 (and consequently N-- oo) on both sides 
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above and applying Lemma 4 we obtain 

,J f-(x)f(x) dx 
lim V (1 - p) y 
P-- mv 

where y > 2/3VrJ. Squaring both sides and using T I W = N/A completes the proof. 

3.2. A spatially unbiased lower bound. As mentioned, Lemma 5 is only an 
intermediate bound since the functions ?5(x) remains unspecified. Determining p(x) 
for the unbiased case gives us the first of our main heavy traffic theorems. 

Theorem 1. Within the class of spatially unbiased policies satisfying P1-P3, 

lim T*( -p)22 [ 2 x] 
p--- >1 m v 

where y> 2/3V. 

Proof. For a spatially unbiased policy, W(x) =W, Vx e s. Thus, p(x)= 
W(x)/W= 1 and ?(x) = (x)f(x) x)=f(x). Substituting ?p(x) =f(x) into Lemma 5 
we obtain Theorem 1. 

This theorem differs from the heavy traffic bound in [6] and [7] in several ways. In 
one sense it is weaker because it is an asymptotic bound while our earlier bounds are 
valid for all values of p < 1. However, it has several important advantages. First, it 
applies to a general density f(x) and general arrival process rather than just to the 
Poisson, uniform case. Second, it improves on the constant value y by a factor of /2 
and thus increases over previous lower bound by a factor of 2. 

3.3. A spatially biased lower bound. Theorem 1 gives an asymptotic bound for 
the case where unbiased service is a constraint, perhaps imposed as a matter of 
policy. What is the system time behavior when this constraint is relaxed? The 
answer, in part, is provided by our second main theorem. 

Theorem 2. Within the class of spatially biased policies satisfying P1-P3, 

ffJ2 () dx] 

lim T*(1 - p)2y m22 
p-l m2v2 

where y - 2/3\V. 

Proof. Since no assumption of unbiased service is made, we cannot determine 
?p(x) as easily. However, consider the following minimization problem for the 
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integral term in Lemma 5: 

z* = min | f -(x)f(x) dx 

(14) subject to (x) dx = 1 

?(x)W O. 

Using the value z* as a lower bound on the integral term in Lemma 5 will give us 
Theorem 1. 

Note that the objective function is convex in f(x) and the constraints are linear; 
thus, (14) is a convex program. Relaxing the equality constraint above with a 
multiplier, we obtain the following Lagrangian dual: 

z*(t)= min f 0- (x)f(x)dx + a[ c(x)dx-1] 
(15) 

(x,-( 

f min [c>-?(x)f(x) + pi0(x)] dx -. 
J^ <(x)>O 

By differentiating the integrand above and setting it equal to zero, we see that a pair 
(+*(x), M*) for which 

(16) - 2[*(x)]- (x) + ,* =O v x E s 

(17) *(x) dx = l 

(18) +*(x) 0 

will satisfy the Kuhn-Tucker necessary conditions for optimality. One can verify by 
substitution that 

(19) * 
[(x ) = f(x)dx] f(x) 

(20) 1 [*= Iif(X)d ] 

is such a pair. The fact that (14) is a convex program implies that these conditions 
are also sufficient to assure global optimality. Substituting the value 0*(x) above 
into Lemma 5 gives us the theorem. 

Remark. Note that even though we did not require it, the resulting f(x) above is 
bounded since f(x) is bounded and is K-Lipschitz since 

If 2(x) -f (Y)l = f - (x)f (x) - f - f (Y)f (Y)l 
If-(y) f(x) -f--(y)f(y)I f-1 If(x) -f(y)l ' K' lIx - y , 

where we have assumed without loss of generality that f(x) -f(y). 
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4. Heavy traffic policies 

We next examine two policies that have provably good performance with respect 
to the lower bounds of Theorems 1 and 2. The policies are modifications of policies 
introduced in [6] and [7]. 

4.1. A provably good spatially unbiased policy. The spatially unbiased policy we 
consider is defined as follows. 

The unbiased (U) TSP policy. Let k be a fixed positive integer. From a central 
point in the interior of X, subdivide the service region into k wedges 
11, 2' , ' -, *k such that fJ,f(x) dx = 1/k, i = 1, 2, .* * , k. (One could do this by 
'sweeping' the region from the depot using an arbitrary starting ray until 
f f(x) dx = 1/k, continuing the sweep until f f(x) dx = 1/k, etc.) Within each 
subregion, form sets of size n/k (n is a parameter to be determined.) As sets are 
formed, deposit them in a queue and service them FCFS with the first available 
vehicle by solving a TSP on the set and following it in an arbitrary direction. 
Optimize over n. 

The following theorem shows that this unbiased policy is guaranteed to be within 
about 80% of the optimal policy in heavy traffic. 

Theorem 3. Let Tu be the optimal system time over the class of spatially unbiased 
policies satisfying P1-P3. Then 

^Tsu_< p 1-8 as p --- 1. 
TJ- 2y2 

where p / 0-72 is the TSP constant in the Euclidean plane (see [3] and [11]). 

Proof. We first obtain some moments for the random variable -, the time to 
service a set. Let Li denote the length of the optimal TSP on a set in region i. Note 
that 

n 
E[z] = k s+ - E E[Li]. k v 1k 

Observe that kf(x) is the conditional density in any given subregion. From the 
asymptotic TSP results of [3] and [19], we can therefore assert that almost surely 

lim = - f f(x)dx 
n -"c n Ji, 

and that E[Li]/Vn converges to this value as well. Thus, 

E[T] - 1 kE[L,] 

(n/k) vV&=i Vn 

(21) -s--P f + t (x) dx 

vV +f (x)d . v\ s 
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To determine a2, consider the random variable L which is an equiprobable 
selection from the set of random variables {Li, *, L }. That is, L is the random 
variable such that 

2 1 n 1 
= 2 + 2Var [L = 2+ - Var L,. 

k v k ki= 

Since Var L, = O(l)(1/k) (see Karp and Steele [13]) we obtain 

(22) (n = + (nlk) n.+[ 

We will use (21) and (22) shortly. 
Note that each region independently generates its own arrival stream of sets and 

thus the input to the resulting queue of sets is the superposition of k renewal 

processes, one from each region. (A queue is denoted E GI/G/m if its input process 
is the superposition of k independent renewal processes (not necessarily identical).) 
We analyze this resulting queue using the following theorem of Iglehart and Whitt. 

Theorem 4 (Iglehart and Whitt [10]). Consider an m-server queue fed by the 

superposition of k renewal processes. Let 1/Ai and Uo2 denote, respectively, the 
mean and variance of the interarrival time of the ith renewal process, i = 

1, 2, * *, k,. Let 1/pj and a2 denote the mean and variance, respectively, of the 
service times at server j = 1, 2, * , m. Define A = Ek= Aji, = 

E=i /1j and p = A//. 
Then as p-> 1 the mean waiting time in queue, W, satisfies 

k m 

(23) E A , 2 + bE 
i=1 i=1 

W-- 
2,p2(1 - p) 

Let i = A/n denote the arrival rate of sets to region i and = = X = kAln 
denote the overall arrival rate of sets. Since the interarrival time in each subregion is 
a geometric sum of interarrival times in the entire region, one can easily show that 
the variance of the interarrival time of sets from subregion i, a2,, is given by 

rai = n o, + --2 ) ' 

where od is the variance of the interarrival times of demands to the entire region i. 
This implies that 

oa, + . 

We shall use the fact that for large values of k, the right-hand side above is 

approximately (1/A)i2, and in heavy traffic, X=m/E[r]. Using these facts and 

applying (21) and (22), we can therefore establish the following limit for W,,, the 
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time a set waits in queue: 

A osS+ o ) +A( ()2 m(n/k) A2 n+ 2 + 

-2( - E[TI) 2(1-P - (x) dx) 

\ mn m v vn 
Note that the stability condition for this queue implies that 

AP3 
p + f(x)dx < 1, 

mvVu i 

which implies 

A2p2( (x) dx)2 

n > 
m22(1 -p)2 

so n - oo as p - 1 and thus using TSP asymptotics is valid in heavy traffic. 
The waiting time Wst, is not itself the wait for service of an individual demand; it is 

the wait in queue for a set. The time of arrival of a set is actually the time of arrival 
of the last demand in that set. Therefore, we must add the time a demand waits for 
its set to form, denoted W-, and also the time it takes to complete service of the 
demand once its set enters service, denoted W+. By conditioning on the position of 
a randomly chosen demand in its tour, one can easily show that 

w- 1 n) k n 
2 k/ A 2A' 

and 

W+_ (n +0() 

where the 0(Vn) term is due to the TSP travel cost to service the sets of size n/k. 
Adding W-, W+ and W,t we obtain the following bound on Tu: 

M(l 
wt P d[ 1 1 1 
T-2A 2(1-p- mv ff(x) dx 

mv\n fs 
Making a change of variable to 

A f f (x) dx 

mv(1 - p)Vn' 
the bound can be written 

AI2(Jff(x)) 
d (1 + MjP) A[ (u + O(y2(1 -p)2) 

2m2( + 2( p)( ) (1 - p) 
2M2mV2(jl-p)2y2 2(1 - p)(1 -y) l( - p) 
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An approximate optimal value for y is 

[1 OF 

V m 1 1 -) 

l 

2(f 2(x))dx (1+M 

Substituting this value into the above bound we find that as p -1, 

:(ff Tu2(x) dx) 1 + 

2m2v2(1 - p)2 

where the second-order term is O((1 - p)-). The theorem then follows by 
comparing the above leading behavior to the bound in Theorem 1 and choosing k 

arbitrarily large. 

Remark. Note the k radial cuts play an important role in this policy. They reduce 
the third component of the waiting time, W+, the wait for the vehicle to reach a 
demand once its set enters service, by a factor of 1/k over our previous policies in 

[6] which used no radial cuts. Since this component of the waiting time, along with 
W+, is a leading order term, the reduction is significant. Indeed, this minor 
modification results in a system time one half as large as the original TSP policy 
presented in [6]. 

Remark. Though the provable guarantee on this policy is 1-8, we conjecture that 
it is in fact an asymptotically optimal policy in heavy traffic. We base this conjecture 
on heuristic arguments. In particular, we have been able to show that if it is optimal 
to always clear a region (such as a radial region) before moving on to service a new 

region, then y = P3/V2 in Theorem 1. A complete proof of this conjecture, however, 
remains an interesting challenge. 

4.2. A provably good spatially biased policy for piecewise uniform demand. We 
next propose a policy that achieves a performance guarantee of p2/2y2- 1.8 with 

respect to the spatially biased bound lower bound when f is a piecewise uniform 
density, i.e. there exists a partition of s into J subsets Sl, 2,, - ', dj with 
bounded perimeter P such that f(x) = pj Vx E dj, j = 1, 2, * * , J. For such a density 

r J 

Jf3(x) dx = Aj. 
j=l 

Note that this density is not K-Lipschitz; however, one can modify it by linearly 
smoothing the function throughout a strip of width E>O about the perimeter 
between the subsets i1, 2, . ', sJ. Call this smoothed function f,(x). The 

resulting fe(x) is K-Lipschitz with K of order (1/E) maxi,j I|li - jl. Further, since the 
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area over which f(x) (x) is O(Pe) and If (x) -f/(x)l = O(max,.j i1 -jil), 

f 3(X) dx = f (x) dx + (P(max |ui - E |)E), 

and thus If, f3(x) dx - Ji f (x) dxl = O(E). In what follows we analyze the problem 
and state our results for the piecewise uniform case directly; however, one should 
bear in mind that we can always approximate such a f(x) arbitrarily closely by a 
K-Lipschitz function f,(x) in order to satisfy the technical requirements of Theorem 1. 

Though such piecewise constant densities are not perfectly general, one could 
approximate a continuous density by a piecwise constant density. Moreover, in 
practice a piecewise uniform density is probably an adequate model. 

The policy itself is defined as follows. 

The biased (B) TSP policy. Let Sl, 2,' , sj be a partition of d such that 
f(x) = Mj VXx e dj, j = 1, 2, ?* * , J. Let Aj denote the area of dj. For a given positive 
integer k, partition each subset dj further into kj = ,iAjk regions of area 

Aj/kj = (p4k)-' (k is a scale factor that will be chosen arbitrarily large; hence, we 
assume an integer kj can be found such that kj/k is sufficiently close to pjAj). Within 
each of these subregions, form demands into sets of size n/k as they arrive. As sets 
are formed, deposit them in a queue and service them FCFS with the first available 
vehicle as follows: (1) solve a TSP on the set; (2) connect the tour to the depot 
through an arbitrary point in the tour; and (3) follow the resulting tour in an 
arbitrary direction servicing demands as they are encountered. Optimize over n. 

Let the system of this policy be denoted TB. We shall prove the following 
theorem. 

Theorem 5. If f is a piecewise uniform density and TB is the optimal system time 
over the class of biased policies satisfying P1-P3, then 

-TB2-y 1-8 as p -1. 
T* - 272 

Proof. We again begin by obtaining the first two moments of the random variable 
r, the time to service a randomly chosen set of demands. A set formed in sij will be 
called a type j set. Let pj =- ijAj denote the probability that a randomly selected set is 
a type j set. (Note that since the set size is n/k in all subregions, the probability that 
a randomly selected demand is contained in a type j set is the same as the 
probability that a randomly selected set is of type j.) Let the random variable Lj 
denote the length of a tour on a type j set. Then 

E[T] = (n/k)g + - pjE[Lj]. 
Vij= 
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We show below that as p - 1, n - oo; therefore 

kE[Lj] =~i~ A 
= 

(V~) kj 
Note that the connection cost to the depot is 0(1) and thus its contribution to 

E[Lj]/V- is negligible as n - oo. Substituting this above implies that as n-> oo 

E[T] JI J 
(24) n s + P p s + Js iA. 

(n/k) V fnj= vvn =1 

To determine o2 we let L be a random variable such that L = Lj with probability 
pj, j = 1, *, J. Then 

or= u2 + Var [L] = 2+ E pj Var [Lj] 
kj= 

Since Var [Lj] = 0(1), for large n and fixed k 

__ 2 0(1) 
(25) -- = a2 

n/k n 

Defining W-, W+ and W,st as before, we have 

W-cE 1 nJ/k ) 
W = J2 5(pjX)/kj 

(26) 2., 
kj 

2--Xj=, 

tiAi 
2-j 1 

and 
n J 

W+ -- p jE[Lj 
(27) 2k v,= 

= s + 0(VI). 2k 

The queue defined by this policy is again a E GI/G/m queue. Let 

= kA p 

n kj 
and a7, denote, respectively, the arrival rate and variance of the interarrival time of 
sets from the ith subregion of dj, i = 1, * , kj. Let A = Ef=I E? I ji = k,A/n denote 
the overall arrival rate of sets. Then, by the same reasoning as in the unbiased case 
we find that 

O2 = a + ( 
p 

at) k\p,a (pj/kj)2A 
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and therefore 

J k. Jk? kki i 
3orii (pjCnk) kj+ jP 

j=-i=1 j=1 i P J 

J El (Pj() Ui?a A2 pj k)) 

(A kX f ( + pj(1 I i)) 

Again, we use the fact that for large values of k, the right-hand side above is 

approximately (1/A)A2. Substituting this approximate expression into Theorem 4 and 

using Equations (24) and (25) we obtain 

1 a2, \ /I 1 o'0(1) 
(A2+ m2 (nlk) iA2 +m2-( 

+ 
n 

2(1 
- 

kAE[r}] 2(1 -p- -E PiAa,) 

Adding the bounds (26) and (27) to the above expression we obtain that as p-> 1, 

TB~ (' ~ A,A+j(?~/1 1 ( 0(1))) 2A= k ) 2 1-p- 
) 

iA 
mv nj= 

In terms of 

Jy = 

mv(l - p)Vn 
we have 

[(E Ai)3)( k ( A )] 
TB= 2m2v2(1 _ p)2y2 

A , 1 
+2 ( + 0(1)) 1 

-2 - n 1 - p) + 
2( l-p)( l-y) + 0y(l - p)) 

An approximate optimal value for y is 

y'2 

+ 

(1-p)) 

2 i 4 A, +A 
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Substituting this into the bound on TB for p -> 1 we obtain 

J J `iA m_ ' 
[( i )(Aj) + ( Aj)- 

T/B 
- 

2m2v2(1- p)2 

where the second-order term is 0((1 - p)-2). For large k, this is arbitrarily close to 

p2( E tiAj 
TB 

2m22(1 -p)2 

Comparing this to the lower bound in Theorem 2 establishes the theorem provided 
that the policy is in the class t when f(x) is replaced by a K-Lipschitz 
approximation f,(x). As described, the policy is not in X since the waiting time 

W(x) is discontinuous at the boundaries of the subregions; however, one can modify 
the policy by randomly assigning points to adjacent subregions over a strip of width 
E about the boundary in such a way that the waiting times W(x) become 

K-Lipschitz. Further, one can show that the resulting system time for such a 
modified policy satisfies 

AP2(sE iAj + (E))3 

TB " 
2m2v2(1 - p)2 

Comparing this to the lower bound in Theorem 2 when f(x) is replaced by f,(x) for 
an arbitrarily small E > 0 completes the proof. 

4.3. A numerical investigation of the performance of the space-filling curve (SFC) 
and nearest-neighbor (NN) policies. In two policies we have examined thus far all 
have constant factor guarantees in heavy traffic. However, they use optimal tours, 
which in practice are difficult to compute. In this section, we perform simulation 

experiments on two alternative policies that are more computationally efficient. The 
first is the space-filling curve (SFC) proposed originally by Bartholdi and Platzman 
in [2]; the second is the simple nearest-neighbor (NN) policy. These policies show 
new interesting behavior and also suggest a generic approach using simulation to 
estimate the behavior of policies which cannot be rigorously analyzed. 

The policies are defined formally as follows. 

The SFC policy. Let '6= {0 10 0_ 1} denote the unit circle and Y= 
{(x, y) I 0-x 1, 0-y - 1} denote the unit square. A space-filling curve is a 
continuous mapping Vi from 6 onto 9Y that preserves certain 'nearness' properties 
(cf. Platzman and Bartholdi [16] and [1] for details). The particular curve we use is 
defined in [1]. Without loss of generality, suppose we scale distance so that the 
service region 4 is contained in Y and maintain the pre-images of all demands in the 

system (i.e. their corresponding positions in c). Then the SFC policy is to service 
demands as they are encountered in repeated clockwise sweeps of the circle Wg. 
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A2 

(Area = 1 - e) 

(Area = E) 

Figure 1. An extreme case general demand example 

The NN policy. At each service completion epoch, the vehicle chooses to visit 
next the closest unserved demand. 

In [6], we showed via simulation study that the system time for these two policies 
has the same form as the TSP policies; namely, for the uniform case, 

2 AA 
T " 2v 1 T v V2(1- p)2' 

where YSFC 0-66 and YNN =0-64. In comparison, the modified TSP policy which 
has yTSP = 051 and the lower bound of Theorem 1 has a value yLB = 0-38. We next 

investigate the distributional behavior of these two policies using a similar set of 
simulation experiments. This analysis also suggests a generic approach to estimating 
the behavior of policies that cannot be rigorously analyzed. 

4.3.1. Simulation experiments. The general demand distribution used in the simula- 
tion experiments is the one shown in Figure 1. The regions d1 and S2 have areas E 
and 1 - respectively. Within each region demands are uniformly distributed. 
Points fall in region sd, with probability 1- 6 and in region i2 with probability 6. 
Thus, the density is piecewise uniform with 

1-6 
X E Si1 

(28) f(x) = 

l- X E -2- 

We used identical simulation techniques (i.e. same simulation code with different 
f(x)) as in [6]. (See [6] for details.) To estimate the dependence of the system time 
for each policy, we set E = 10-4 and fixed A = 1, s = 0.1, a2 = 0 and p = 0-8. Then, a 
different simulation run was performed for 11 values of 6 in the range 0-05 to 
0-9999. (This last value corresponds to uniform demand.) The observed average 
number in the system (which is proportional to the average system time) was 
recorded for each 6 for both the SFC and NN policies. 
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4.3.2. Distributional behavior of SFC and NN policies. Before examining the results 
of the simulation runs, it is useful to consider the following representation of the 
dependence of the system time on the density f(x): 

T=@8( AH(a ) T= 
2v2(1 - p)2 

where 

(a) = [f (x) dx 

In the unbiased case a = 4 and in the optimal biased case a = 2. For the particular 
density f(x) given by (28) and for E small, 

E(c) - [6 ~(1- )'- - 

and therefore for a particular policy u 

log(T,) log()- 

where c, depends on the policy and the system parameters (A, s, etc.) and a gives 
the distributional dependence of the policy. Thus, by plotting log (T,) (or log (N,)) 
against log (6) and performing a linear regression, one can estimate a and hence the 
distributional dependence of the policy ,u. We would expect a value of a = 4 for 
unbiased policies and a value of a = 3 for policies that behave like the optimal 
baised policy. Note that since log (-) is increasing and log (6) < 0, higher values of a 
imply lower system times. 

Figure 2 shows a log-log plot of the sample average number in the system as a 

1- 

0- 

Z 

0 

-1- Slope = 080 
^ E 13 log (NNN) 

/ Slope = 1-371 * log (SFCN) 

log () 

Figure 2. Simulation results for SFC and NN policies for general demand distribution 
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function of 6 for our simulation runs. The least squares estimate of the slope of each 
line is shown in Figure 2 as well. For the SFC policy, the estimated slope of 0-80 
corresponds to a = 0 44 while for the NN policy, the slope of 1-37 implies a = 0.58. 
These values suggest that the SFC policy performs approximately like an unbiased 
policy since its value of a, is close to I, though its performance appears to be 
somewhat worse (higher a) than a purely unbiased policy. The NN policy, on the 
other hand, seems to perform better than a purely unbiased policy but not as well as 
an optimal biased policy; that is, it achieves a higher value of a than an unbiased 
policy could, but does not achieve a value of a = 2 as in an optimally biased policy. 

These results suggest a means of characterizing other analytically intractable 
policies; namely estimate f, and a, as we did above and use the approximation 

2 A^( ) 
T, m22V(l_ p)2' 

For example, this estimation might be performed using operating data from a 'live' 
system and the results used to evaluate current operating practice. 

5. Relationship between biased and unbiased behavior 

To review, we have determined that 

=m 2(2jl- p)2) 

where for the uniform demand case, E=A, for the spatially unbiased general 
demand case E= (f f(x)dx)2 and for spatially biased general demand case 
E=(S.ff3(x)dx)3. We next briefly examine the relationship among these various 
distributional behaviors. 

Since unbiased service is a constraint, the system time of the optimal biased policy 
should be lower than the optimal unbiased policy for all densities f. This is indeed 
the case as shown by the following proposition, which also gives the relationship of 
the general distribution case to the uniform case. 

Proposition 1. For any continuous density function f(x) defined over the region 
si of area A 

A [ f(x) dx] [ f(x) dx] 

with equality holding throughout if and only if f(x) = 1/A, Vx E i. 

Proof. The proof requires the following inequality of Hardy et al. [9]. 
Lemma 6 (Hardy et al.). If a > 1 or a < 0, g(x) > 0 and h(x) - 0 then 

fg(x-) ' (x) dx (> g(x) dx) fh(x) dx) 

with equality if and only if g(x)/h(x) is constant for all x. 
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For the first inequality in our proposition, take g(x)=f(x), h(x)=f?(x) and 
a =2 above, and note that g(x)l-h(x)a=f-'(x)f(x) =1 which implies that 
f S g(x)'- h(x)a dx = fs dx = A. Also, 

c 2 (f g(x) dx) (fh(x) dx)= (ff2(x) dx). 

Thus, 

A=(ff 2(x)dx) 

with equality if and only if f(x)I/f(x) =f (x) is constant for all x, which implies 
f(x) = /A, VXx e . 

For the second inequality, take g(x) =f2(x), h(x) =f (x) and ac =-2 above and 
note that g(x)'- h(x)` =f2(x)f-(x) =f(x) and fj f(x) dx = 1 we obtain 

(ffi(x) dx) l( x) dx 1. 

Equality holds above if and only if f3(x)/f (x) =f (x) is constant for all x, again 
implying f(x) = 1/A, Vx E S. 

Remark. Proposition 1 says that a uniform density is the worst possible and that 
any deviation from uniformity in the demand distribution will strictly lower the 
optimal mean system time in either the unbiased or biased case. In addition, 
allowing biased service will result in a strict reduction of the optimal mean system 
time for any non-uniform distribution f. Also, note that when the density is uniform 
there is nothing to be gained by providing biased service. 

One may question how different the system times for a biased and unbiased policy 
may be in general. That is, how much can one gain by discriminating according to 
location? Or, alternatively, how much does one lose by imposing an unbiased 
service constraint? The answer is that in the worst case the two can be arbitrarily far 
apart. This is illustrated by the simulation example in Figure 1. For the density used 
in this example, it is straightforward to show that for a fixed 6 >0 and - 0, 

[ (x) dx = 6(1 - e) + 0(e) 

and 

[f(x) dx] =6 2(1- ) + O(E). 

Thus, there exists a constant c such that in heavy traffic 

as e-> 0, 

970 



Stochastic and dynamic vehicle routing 

where TF and TD are, respectively, the optimal unbiased and biased mean system 
times. Since 6 >0 can be arbitrarily small, this says that in heavy traffic the cost of 
the optimal unbiased policy can be unbounded relative to the cost of the optimal 
biased policy. 

Intuitively, one can explain the behavior of this example as follows. In an 
unbiased policy, the few points that fall in the large regions M2 must be visited as 
regularly as the large number of points that fall in the much smaller region i1. 
However, visiting the points in /2 is time-consuming since they are typically far 
away from neighboring points. These infrequent yet time-consuming trips to 
demands in S2 impose large delays on the demands in 1i, which in turn drags down 
the overall mean system time. In a biased policy, we can allow the relatively small 
number of demands in M2 to wait much longer than the demands in X,. The 
demands in /2 then build up and can be serviced more efficiently with larger tours. 
This frees up more vehicle time to service the much higher fraction of demands that 
land in S1, improving their system time. The net result is to reduce the overall 
system time. 

6. On the tightness of the lower bounds for the general case 

In the proof of Lemma 4, one can see that very little of the vehicle routing 
structure inherent in the DTRP was used. Indeed, we only used the fact that the 
service was sequential (i.e. one demand served at a time) and the normalized 
waiting times satisfied P3. This allowed us to establish that the mean number left 
behind by a departure from any given region was asymptotically the same as the 
time-average number in queue in that region. The bound therefore applies to any 
system in which points arrive randomly to a Euclidean region and are then removed 
sequentially according to some given rule. For example, we might remove a point 
after it spends a constant amount of time T in the system, in which case the expected 
nearest-neighbor distance E[Z*] and the mean number in queue N would also 
satisfy Lemma 4. A DTRP policy, in this sense, simply defines one such rule for 
removing points; namely, remove a point after a vehicle following a given policy M 
has completed its on-site service. In this section, we show that the lower bound in 
Lemma 4 is in fact tight within this broader class of removal rules, and therefore 
more vehicle routing features of the DTRP need to be exploited if one wants to 
improve on these bounds. 

6.1. An optimal removal rule. As in the DTRP, consider a region s that receives 
arrivals according to a renewal process with intensity A. The locations of arriving 
points are i.i.d. and distributed according to a general spatial density f(x). Points 
are removed from the system according to the following rule. 

Optimal removal rule. Each arrival of a new point triggers a round of removals. 
A round of removals proceeds as follows: the oldest point in the system that is 
within a radius z of any neighboring point is removed. (z > 0 is an arbitrarily small 
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constant.) The second oldest point with z of any of the remaining points is then 
removed, etc. The round continues until no more points are left within z of any 
other point. Though these removals are sequenced, we assume the round of 
removals takes place instantaneously. This process is repeated for every arriving 
point. 

Theorem 6. For the optimal removal rule, 

2 I f E[Z*] = 3-- f(x) dx. 
3 V;r \ JN_ 

Proof. We first analyze this policy for the uniform demand case. Note that at the 
end of a round, all points in the system are more than a distance z from their nearest 
neighbor. Also, arriving points are never eliminated in the round of removals that 
they initiate. This is because all points within a radius z of the arriving point are 
necessarily older and thus will be eliminated before the current arrival is considered. 
Similarly, all points in the system at the time of an arrival that are within a distance 
z of the arrivals location will be eliminated during its round because the arriving 
point is always the newest. 

Given these observations, we see that a point waits in the system until a 
subsequent arrival falls within a distance z of it, at which point it is eliminated by the 
round of removals generated by this arrival. Since the probability that an arrival falls 
within z of any given location is nz2/A (ignoring edge effects because z is small) and 
the mean interarrival time of points is 1/A, the waiting time, W, under this policy is 

A 
W .rz2' 

We next determine the expected nearest-neighbor distance at the time of removal, 
E[Z*]. Consider the removal epoch of a point i whose location we denote xi. Note 
that at the removal epoch there is only one point within a radius z of xi, namely the 
point that initiated the round of removals. Thus, the arriving point that triggers the 
removal of i is always the nearest neighbor to xi. Since the arriving point's location is 
uniformly distributed within the circle of radius z about xi, we have 

E[Z*]= P{Z*>x} dx 

= J1- 2) dX 
=J f(1-z2dx 

-= 2. = Z. 

Using the expression for W above we have 

Z A 7rA 
AWJr .rN 
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which substituted into the expression for E[Z*] implies 

2 
E[Z*l= 3v . 

Comparing this to the bound in Lemma 4 and recalling that p(x) =f(x)= 1/A for 
the spatially unbiased, uniform case proves the theorem for the uniform case. 

This result can be extended to the non-uniform case by taking the radius z above 
to be a function of a point's location x; that is, z(x). Define 

z(X) = Vf(x) ) 

where > 0 is an arbitrarily small constant. Note that the conditional wait given that 
a point arrives at location x satisfies (for sufficiently small z(x)) 

1 1 
E[W I X= x] = (x)rz2(x) = 

and is therefore the same as the unconditional waiting time W. Using this 
observation, we can write z(x) as follows: 

z(x) = Nf ()Jr ' 

For the same reasons as in the unform case, 

2 
E[Z* X = x] = x z(x)= f-(x)N-. 

3 3 

Unconditioning implies 

E[Z*]= 2- f(x) dx, 
3Vjr VWV 

which establishes the theorem for general f(x) as well. 

Remark. We have not discovered an analogous example for the general biased 
case. 

Remark. The bound in Lemma 4 is in essence a dynamic counterpart to the 
following static nearest neighbor bound for n uniformly distributed points in a 
region of area A: 

E[Z*]>5 

which is used in the probabilistic analysis of Euclidean problems such as the TSP, 
matching and minimum spanning tree [15]. In the same sense that this nearest 
neighbor bound is weak for the static TSP, one can see that the bound of Lemma 4 
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is likely to be weak for the DTRP. This suggests that the provable performance 
bound of 1-83 for the unbiased and biased policies is indeed too pessimistic. 

7. Further extensions 

7.1. General demand distributions and capacitated vehicles. Most of the results 
for the general demand distributions extend to the capacitated vehicle case as well. 
The capacity constraint we consider is an upper bound of q on the number of 
demands a vehicle can serve before it must visit the depot at x,. We let 
r E[IIX - xll] denote the average distance from a demand location to the depot. 
We shall only summarize results in this section since the analysis closely parallels the 
arguments we have seen in previous sections and in [6] and [7]. 

By using the more general bound on the nearest neighbor distance E[Z*] of 
Lemma 4 in the arguments of [7], one can show the following theorems. 

Theorem 7. Within the class of spatially unbiased policies, 

lim T* 1-p- ~ > lim ( _ _ 2AF )2 2A(1 +)[f2Xdx] 
p+2Xr/(mvq)- I ( mvq = 9 m v2 

where y _ 2/3V/. 

Theorem 8. With the class of spatially biased policies 

lim T* ( 1 _ p _ 2AF )2 2A 1 + ) [f (x) dx] lim T* 1-p-2 > 
p+2).r/(mvq)- 1 mvq/ 9 m v 

where y _ 2/3VF. 

A provably good unbiased policy for the finite-capacity case can be obtained by 
modifying the unbiased policy from Theorem 3 as follows: as sets of size n/k are 
formed, partition these sets into feasible tours of at most q points using the tour 

partitioning heuristic of Haimovich and Rinnooy Kan [8] as was done for the 
modified qTP policy in [7]. Serve these sets FCFS and optimize over n. For large k 
the resulting system time, Tqu, then satisfies 

( )'( (x(l) dx) 

Tqu 2Ar\2 
2m2v2 1 - p -- )mq 

mvq 

which implies the same performance guarantee as in the uniform case (cf. [7]). 
An identical tour partitioning modification applied to the sets formed in the 

spatially biased policy of Theorem 5 gives a policy with a system time, TqB, 
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satisfying 

i2(1 - )2(, 3(x) dx 

TqB 
q 

'" 2 
2T2 2 2 

2m2v2(1 -p - m ) 
mvq 

These policies and bounds describe the behavior of the most general version of 
the DTRP we have seen thus far and give a comprehensive picture of how a rich set 
of parameters influences congestion in dynamic vehicle routing systems. 

7.2. High dimensions. Most of the DTRP bounds and policies can be extended to 
Euclidean subsets S of Rd for arbitrary dimension d. We examine this extension 

briefly in this section. 
Modifications to the proofs of Theorems 1 and 2 give the following bounds. 

Theorem 9. Within the class of spatially unbiased policies, 

y(d)dAd- [f(d -l)/d(x) dx] 

lim T*(1 p)d > mdv 
p-1 m dd 

where 

Y(d) 
= 

Tr( )'1 d+1 d+l + Cd 

and 

Cd 1) 

is the volume of the ball of unit radius in dimension d (r(x) is the usual gamma 
function). 

Theorem 10. Within the class of spatially biased policies 

y(d)dAd-[ f dl(d+ 1(x) dx] 

lim T*(1 -p)d mdv 
p--.i m v 

where 

y( -) d + 
- l 

d +1 Cd) 
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Again, similar results holds for the capacitated problem, in which case (1- p) 
becomes (1 - p - (2Ar/mvq)) in the above bound and also y(d) is replaced by 
y(d)/3. 

In a similar manner, one can analyze the various service policies in d dimensions. 
The results parallel those in the two-dimensional case; namely, there are constants 

y,,(d) that depend only on the policy and the dimension d such that the system time, 
T,, satisfies 

Xd-l (d) 
T_- yd d d d as p-i m v (1 _ p)d 

where E(d) = V for the uniform case, 

(d) = [ f(d-'})d(x) dx] 

for the spatially unbiased case and 

d= [f(fda+)(x) dx] 

for the spatially biased case. For example, the modified TSP policy in d dimensions 
has a constant value of P(d)/2'", where f(d) is the d-dimensional TSP constant. 

An interesting result is found by examining this policy for d- oo. In [5], it was 
conjectured and subsequently proved in [18] that for dr-oo, P(d) - V/I2re. By 
using the fact that for d- oo, d/(d + 1) - 1, (l/(d + l))l/d 1 and 

d\d/2+1 / 

r(Id+ 1) - V ) () exp (- ), 

it is straightforward to show that 

y(d) 

as d- oo as well. Therefore we have the following theorem. 

Theorem 11. For the uncapacitated, m-server DTRP, the modified TSP policy is 
an optimal heavy traffic policy asymptotically as d - oo. 

This theorem gives further evidence of the asymptotic optimality of the modified 
TSP policy, which we have conjectured is optimal for d = 2. 

8. Conclusions 

We analyzed dynamic vehicle routing problems in Euclidean regions under 
general distributional assumptions. The analysis yields simple expressions for the 
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system time that provide structural insight into the effects of traffic intensity, on-site 
service characteristics, the number, speed and capacity of vehicles employed, service 
region size, the distribution of demand locations and bias constraints. Such insights 
can be used to develop strategic planning models for terminal location, fleet sizing 
and districting. We see such strategic planning models as a potentially fruitful area 
for further applied research. 

A recurring finding in our analysis is that static vehicle routing methods when 
properly adapted can yield near optimal or perhaps even optimal policies for 
dynamic routing problems. This is an encouraging result on several levels. On a 
theoretical level, it suggests that there is indeed a connection between the static and 
dynamic problems; that is, the DTRP has geometrical characteristics that are 
intimately related to the corresponding characteristics for static VRPs. On a 
practical level, the results imply that most of the exact algorithms, heuristics and 
insights which have been developed over the years of investigation of static VRPs 
are not irrelevant in this context and can in fact form the basis for effective policies 
in dynamic, stochastic environments. 

References 
[1] BARTHOLDI, J. J. AND PLATZMAN, L. K. (1982) An O(N log N) planar traveling salesman heuristic 

based on space filling curves. Operat. Res. Lett. 1, 121-125. 

[2] BARTHOLDI, J. J. AND PLATZMAN, L. K. (1988) Heuristics based on space filling curves for 
combinatorial problems in Euclidean space. Management Sci. 34, 291-305. 

[3] BEARDWOOD, J., HALTON, J. AND HAMMERSLEY, J. (1959) The shortest path through many 
points. Proc. Camb. Phil. Soc. 55, 299-327. 

[4] BERTSIMAS, D. AND NAKAZATO, D. (1991) The general distributional Little's law and its 
applications. Operat. Res. To appear. 

[5] BERTSIMAS, D. AND VAN RYZIN, G. (1990) An asymptotic determination of the minimum spanning 
tree and minimum matching constants in geometrical probability. Oper. Res. Lett. 9, 223-231. 

[6] BERTSIMAS, D. AND VAN RYZIN, G. (1990) A stochastic and dynamic vehicle routing problem in 
the euclidean plane. Operat. Res. 39, 601-615. 

[7] BERTSIMAS, D. AND VAN RYZIN, G. (1993) Stochastic and dynamic vehicle routing in the euclidean 
plane with multiple capacitated vehicles. Operat. Res. 41, 60-76. 

[8] HAIMOVICH, M. AND RINNOOY KAN, A. H. G. (1985) Bounds and heuristics for capacitated 
routing problems. Math. Operat. Res. 10, 527-542. 

[9] HARDY, G. H., LITTLEWOOD, J. E. AND POLYA, G. (1934) Inequalities. Cambridge University 
Press. 

[10] IGLEHART, D. L. AND WHITr, W. (1970) Multiple channel queues in heavy traffic, I and II. Adv. 
App. Prob. 2, 150-177 and 355-364. 

[11] JOHNSON, D. (1988) Talk presented at the Mathematical Programming Symposium, Tokyo. 
[12] KARP, R. (1977) Probabilistic analysis of partitioning algorithms for the traveling salesman in the 

plane. Math. Operat. Res. 2, 209-224. 

[13] KARP, R. M. AND STEELE, J. M. (1985) Probabilistic analysis of heuristics. In The Traveling 
Salesman Problem: A Guided Tour of Combinatorial Optimization, ed. E. L. Lawler, J. K. Lenstra, A. 
H. G. Rinnooy Kan and D. B. Shmoys. Wiley, Chichester. 

[14] LAWLER, E. L., LENSTRA, J. K., RINNOOY KAN, A. H. G. AND SHMOYS, D. B. (EDS.) (1985) The 

Traveling Salesman Problem: A Guided Tour of Combinatorial Optimization. Wiley, Chichester. 
[15] PAPADIMITRIOU, C. H. (1978) The probabilistic analysis of matching heuristics. Proc. 15th 

Annual Allerton Conf. on Communication, Control and Computing, pp. 368-378. 

977 



978 DIMITRIS J. BERTSIMAS AND GARRETT VAN RYZIN 

[16] PLATZMAN, L. K. AND BARTHOLDI, J. J. (1983) Spacefilling curves and the planar traveling 
salesman problem. PDRC Technical Report 83-02, Georgia Institute of Technology. 

[17] PSARAFTIS, H. (1988) Dynamic vehicle routing problems. In Vehicle Routing: Methods and 
Studies, ed. B. Golden and A. Assad, North-Holland, Amsterdam. 

[18] RHEE, W. (1991) On the TSP in many dimensions. Random Structures. To appear. 
[19] STEELE, J. M. (1981) Subadditive euclidean functionals and nonlinear growth. Ann. Prob. 9, 

365-376. 

[20] WOLFF, R. W. (1982) Poisson arrivals see time averages. Operat. Res. 30, 223-231. 


	Article Contents
	p.947
	p.948
	p.949
	p.950
	p.951
	p.952
	p.953
	p.954
	p.955
	p.956
	p.957
	p.958
	p.959
	p.960
	p.961
	p.962
	p.963
	p.964
	p.965
	p.966
	p.967
	p.968
	p.969
	p.970
	p.971
	p.972
	p.973
	p.974
	p.975
	p.976
	p.977
	p.978

	Issue Table of Contents
	Advances in Applied Probability, Vol. 25, No. 4, Dec., 1993
	Volume Information [pp.1015-1017]
	Front Matter
	The Final Size and Severity of a Generalised Stochastic Multitype Epidemic Model [pp.721-736]
	Explosive Markov Branching Processes: Entrance Laws and Limiting Behaviour [pp.737-756]
	Large Deviations in the Supercritical Branching Process [pp.757-772]
	Limiting Behaviour of Two-Level Measure-Branching [pp.773-782]
	A Compensation Approach for Two-Dimensional Markov Processes [pp.783-817]
	The Probability of Attaining a Structure in a Partially Stochastic Model [pp.818-824]
	General Optimal Stopping Theorems for Semi-Markov Processes [pp.825-846]
	Compound Poisson Approximations for the Numbers of Extreme Spacings [pp.847-874]
	Extremal Large Deviations in Controlled i.i.d. Processes with Applications to Hypothesis Testing [pp.875-894]
	Stochastic Majorization of Stochastically Monotone Families of Random Variables [pp.895-913]
	Optimal Allocation under Partial Ordering of Lifetimes of Components [pp.914-925]
	Modeling of Repairable Systems [pp.926-938]
	Partial Orderings under Cumulative Damage Shock Models [pp.939-946]
	Stochastic and Dynamic Vehicle Routing with General Demand and Interarrival Time Distributions [pp.947-978]
	On the Optimality of Lept and μ c Rules for Parallel Processors and Dependent Arrival Processes [pp.979-996]
	Blocking Probabilities for Large Multirate Erlang Loss Systems [pp.997-1009]
	Letter to the Editor
	The Survival of Various Interacting Particle Systems [pp.1010-1012]

	Correction: On Preservation of Some Partial Orderings under Shock Models [p.1013]
	Back Matter





